Updating Recommendations for Use of Anthrax Vaccine in the United States

Kate Hendricks Medical Officer NCEZID/DHCPP/BSPB

June 21, 2017

National Center for Immunizations and Respiratory Diseases

Agenda

Background

- Anthrax
- Anthrax Vaccine Adsorbed (AVA)
- Anthrax antitoxin
- 2010 AVA ACIP recommendations
- Anthrax antitoxin for postexposure prophylaxis

Reconvening ACIP workgroup

- New/reanalyzed data
- Reformulation of AVA
- Terms of Reference
- Workgroup Members

BACKGROUND ON ANTHRAX

ACIP Meeting June 20/28, 2017

National Center for Emerging and Zoonotic Infectious Diseases

The Agent

Bacillus anthracis is the causative agent of anthrax

 Gram positive sporeforming bacterium

Spores are the infective form

- Can be mass produced and released as an aerosol as a bioweapon
- Vegetative form produces two major toxins

Epidemiology: Naturally Occurring Disease

- Primarily disease of herbivores that ingest spores
- Human contact with infected animals/animal products
 - Woolsorter's disease
- Butchering and eating of contaminated carcasses
 - Both cutaneous and gastrointestinal cases
- Incidental inhalation of spores from work or hobby
 - Drummer cases

Cycle of *B. anthracis* Infection

Adapted from: Turnbull PC. Anthrax in humans and animals. 4th ed. Geneva, Switzerland: World Health Organization; 2008. Images: CDC Public Health Image Library <u>www.phil.cdc.gov</u> unless otherwise noted

Types of Anthrax

- Cutaneous
- Ingestion
- Inhalation
- Injection
- Meningitis

Cutaneous Anthrax

- Most common form
- Transmission: spores introduced through skin (often, but not always through pre-existing abrasions)
- Germination: 1-3 hours after inoculation
- Incubation: 1-17 days
- Case fatality rate:
 - Without treatment: ~24%
 - With antimicrobial treatment: <2%</p>

Ingestion Anthrax

- 2nd most common form of naturally occurring anthrax
- Transmission: ingestion unclear whether it is spores or vegetative cells in poorly cooked meat
- Two forms: oropharyngeal and abdominal
- Incubation: 1- 14 days
- Case fatality rate with treatment:
 40%; but may be higher in children

Inhalation Anthrax

Transmission: inhalation of aerosolized spores from hair/hides/animals or BW- or BT-related events

Incubation:

- Range in humans: 1-43 days
- Sverdlovsk: 2-43 days
- 2001: 5-13 days

Case fatality rate with treatment

- **1900-2000: 92%**
- 2001 and after: 47%

Injection Anthrax

Recently identified in heroin-injecting drug users in northern Europe

- These are severe soft tissue infections that are deep under the skin or in the muscle where the drug was injected.
- Never reported in the United States.
- Transmission: injection of contaminated heroin, though the mode of abuse was not well documented in most reports
- Incubation: 2-10 days
- Case fatality rate with treatment: 37%

Meningitis

- Can accompany inhalation, ingestion, cutaneous, or injection disease
 - 21/38 (55%) brains examined at autopsy in Sverdlovsk had hemorrhagic meningitis¹
- Can occur as a primary manifestation of anthrax (i.e., no other route of transmission)²
- Case fatality rate for meningitis secondary to inhalation anthrax, 1900 – 2005³:
 - 100% (30/30) with meningitis died
 - 81% (42/52) without meningitis
- 1. Abramova FA. Proc Natl Acad Sci. 1993;90:2291-94
- 2. Holty JE. Ann Emergency Med. 2006;200-211.
- 3. Holty JE. Ann Int Med. 2006;144:270-80.

Global Distribution of Anthrax, 2005-2016

Cases of Human Anthrax in U.S., 1951–2014 (N = 439)

Epidemiology: Bioterrorism

- Anthrax spores: the most likely bioweapon
 - Relatively easy and cheap to produce
 - Can be stored for a long time
 - Can be aerially dispersed a variety of ways
 - Odorless, colorless, tasteless
 - Inhalation anthrax is highly lethal
 - May survive > 40 yrs
- Can cause widespread illness and death among unprotected persons
 - Sverdlosk incident, 1979
 - US mail incident, 2001

Hypothetical Wide Area Outdoor Release

BACKGROUND ON AVA

ACIP Meeting June 21, 2017

National Center for Emerging and Zoonotic Infectious Diseases

Anthrax Vaccine Facts

Anthrax Vaccine Adsorbed (BioThrax[®])

- Manufactured
 - Michigan Dept of Health until 1998
 - Currently Emergent BioSolutions
- Aluminum hydroxide precipitate
- Sterile, cell-free filtrate made from microaerophilic cultures of avirulent, non-encapsulated B. anthracis*

Final product*

- Adjuvant: 1.2 mg/mL aluminum
- Preservatives: 25 µg/mL benzethonium chloride and 100 µg/mL formaldehyde

Anthrax Vaccine Adsorbed

Vaccine primes immune system

- To recognize and block protective antigen (PA)
- PA is common to all anthrax strains
- Vaccine efficacy demonstrated against numerous anthrax strains in various animal studies

Anthrax Vaccine History

- 1950s: Ft. Detrick/"Merck" formulation
 - Cell culture filtrate; precipitated with alum
 - Brachman studies
 - Brachman et al. Am J Pub Hlth 1962;52:632.
- 1960s: "Lansing" formulation
 - Manufacturing process improved
 - Increased PA concentration, purity, and potency
- 1970s: "Lansing" formulation licensed
 - Used data from Brachman studies ("Ft. Detrick" formulation)
 - Recommended for those at high risk of exposure
- Reviewed by ACIP 2007-2009; MMWR published 2010

AVA plus CPG 7909 (Nuthrax[®])

- AVA plus CPG 7909 (a synthetic immunostimulatory oligonucleotide) investigated for its potential to achieve an accelerated immune response for anthrax PEP
 - Synthetic oligonucleotides (ODN) with "CpG motifs"
 - trigger cells with toll-like receptors -- a type of pathogen recognition receptor expressed primarily on immune cells.
 - improve antigen presentation and vaccine-specific cellular and humoral responses.
 - Compared with AVA, AVA plus CPG 7909 is expected to achieve an accelerated immune response,
 - necessitating fewer injections
 - reduced amount of antigen to confer protection

BACKGROUND ON ANTHRAX ANTITOXIN

ACIP Meeting June 21, 2017

National Center for Emerging and Zoonotic Infectious Diseases

BACKGROUND ACIP ANTHRAX VACCINE RECOMMENDATIONS FOR ADULTS (MMWR 2010) ACIP Meeting

June 21, 2017

National Center for Emerging and Zoonotic Infectious Diseases

Anthrax Vaccine Adsorbed (AVA) Uses

- Pre-exposure Prophylaxis (PrEP) for persons who have a risk of exposure to *Bacillus anthracis* through their occupation
- Post-exposure Prophylaxis (PEP) for persons potentially exposed to *Bacillus anthracis*

AVA for PrEP

- AVA is for the prevention of disease caused by *Bacillus anthracis*, in persons 18 through 65 years of age at high risk of exposure
- For PrEP, the vaccine is administered at a dose of 0.5ml and is administered as a
 - Primary series: IM at 0, 1, and 6 months
 - Booster doses: IM at 12 and 18 months after initiation of the primary series, and at 1-year intervals thereafter for those at continued risk of infection

AVA for PrEP (continued)

It is recommended for:

Persons handling potentially infected animals in research settings or in areas with a high incidence of enzootic anthrax or when standards and restrictions are insufficient to prevent exposure to *B. anthracis*

Persons who perform certain types of laboratory work involving *B. anthracis*

AVA for PrEP (continued)

It is recommended for:

- Persons involved in anthrax environmental investigations or remediation efforts
- Certain military personnel
- May be offered to persons involved in emergency response activities

AVA for PEP

- ACIP recommends PEP for unvaccinated persons after exposure to aerosolized *B. anthracis* spores
- For PEP, AVA is administered as a 3-dose SC regimen at 0, 2, and 4 weeks in combination with 60 days of oral antimicrobials
- AVA series results in rapid anti-PA antibody production and augments the antimicrobial portion of PEP

AVA for PEP (continued)

- With this combined antimicrobial-vaccine approach, the immune system benefits from
 - Antimicrobial protection provided against germinating spores and vegetative cells of *B*. *anthracis*
 - While gaining enough time to establish immunological priming and establish anamnestic capability (*i.e.*, immunological memory).

Anthrax Antitoxin as PEP

- Three antitoxins are approved for treatment of inhalation anthrax in combination with antimicrobials
 - Raxibacumab
 - Anthim
 - AIGIV
- Two antitoxins are also FDA-approved for prophylaxis when alternatives are not available or inappropriate
 - Raxibacumab
 - Anthim

ACIP ANTHRAX VACCINE WORKGROUP

ACIP Meeting June 21, 2017

National Center for Emerging and Zoonotic Infectious Diseases

ACIP Anthrax Work Group

- Review operational issues related to mass vaccination following a wide-area release of *B. anthracis* spores
- New data since 2010 MMWR on
 - Increased intervals between booster doses for PrEP
 - An alternative administration route for PEP
 - Modeling for an adequate immune response in humans based on nonhuman primate studies
- Development of new formulation of AVA for licensure
 - AVA plus CPG 7909 adjuvant
- Review and advise on anthrax antitoxin for use as PEP
- ACIP Anthrax Vaccine Work Group reconvened spring 2017.

Terms of Reference

- Review AVA data on reduced booster schedule for pre-exposure prophylaxis
- Review immunogenicity, safety, and logistical considerations for providing AVA via intramuscular versus subcutaneous route and provide evidencebased recommendations for administration as post-exposure prophylaxis
- Review AVA with CPG 7909 Adjuvant data and provide evidence-based recommendations for post-exposure prophylaxis.

Terms of Reference (continued)

- Review efficacy and immunogenicity data on reduced schedule and half-dose AVA use for post-exposure prophylaxis to prepare for potential emergency meeting for a mass casualty incident when AVA is a limited resource.
- Review and advise on use of AVA and antitoxin for post-exposure prophylaxis when no effective antimicrobials are available or have an absolute contraindication.

ACIP Anthrax Vaccine Work Group Members

- David Stephens Chair
- Robert Atmar ACIP Member
- Kathleen Neuzil IDSA
- Richard Beigi ACOG
- James Campbell AAP
- Matthew Zahn NACCHO
- **Eric Deussing DOD**
- Judy Hewitt NIH
- Kim Taylor NIH
- Alexandra Worobec FDA
- Julie Clifford FDA
- Eric Espeland BARDA
- Chia-Wei Tsai BARDA

- Wendy Keitel AVA SME
- Art Friedlander Anthrax SME
- Phillip Pitman Anthrax SME
- Andy Pavia Peds SME
- William Bower Anthrax SME
- Kate Hendricks Anthrax SME
- Jarad Schiffer Anthrax SME
- Charles Rose Statistics SME
- Marie de Perio NIOSH
- Mike McNeil Vaccine Safety
- Jennifer Wright Anthrax SME
- Jennifer Liang Vaccine SME
- **Yon Yu Regulatory Affairs**